Carrello Lista desideri Login Registrati Aiuto e FAQ Buoni regalo Spedizioni
Ricerca
Books

FDTD Modeling of Metamaterials: Theory and Applications<...

FDTD Modeling of Metamaterials: Theory and ApplicationsTitoloFDTD Modeling of Metamaterials: Theory and Applications
AutoreHao, Yang ; Mittra, Raj
Prezzo
Sconto -15%
€ 103,32   Spedizioni gratuite in Italia
(Prezzo € 121,55)
CategoriaTechnology: Materials Science
Technology: Electricity
RilegaturaHardcover
Dati379 p.; ill.
Anno2008
EditoreArtech House Publishers
Normalmente disponibile per la spedizione entro 5 giorni lavorativi (poche copie disponibili)

Aggiungi alla lista dei desideri
Prezzo di copertina: Dollari$ 149.00 (Come calcoliamo i prezzi in euro)
nectarQuesto prodotto dà diritto a 103 punti Nectar.
Per saperne di più
Condividi 
FacebookTwitterTwitterTwitterTwitter
altri
Indice e argomenti trattati
Prefacexi
Acknowledgmentsxiii
Introduction
1
What Are Electromagnetic Metamaterials?
1
A Historical Overview of Electromagntic Metamaterials
2
Artificial Dielectrics
4
Artificial Magnetic Materials
8
Bianisotropic Composites
8
Double-Negative and Indefinite Media
9
Photonic and Electromagnetic Crystals
11
Numerical Modeling of Electromagnetic Metamaterials
15
Layout of the Book
17
References
18
Fundamentals and Applications of Electromagnetic Bandgap Structures
25
Introduction
25
Bloch's Theorem and the Dispersion Diagram
25
Translational Symmetry
26
Bloch's Theorem and Periodic Boundary Condition (PBC)
27
Brillouin Zone
29
Dispersion Diagram and EBG
30
An Overview of Numerical Methods for Modeling EBG Structures
33
The Generalized Rayleigh's Identity Method and the Korringa-Kohn-Rostoker (KKR) Method
33
Plane-Wave Expansion Method
35
The Transfer-Matrix Method
36
The Finite-Difference Time-Domain (FDTD) Method
39
An Overview of EBG Applications
41
In-Phase Reflection
41
Suppression of Surface Waves
45
EBGs Operating in Defect Modes
46
Subwavelength Imaging from the Passband of the EBGs
58
Summary
61
References
61
A Brief Introduction to the FDTD Method for Modeling Metamaterials
67
Introduction
67
Formulations of the Yee's FDTD Algorithm
67
Maxwell's Equations
67
Yee's Orthogonal Mesh
69
Time Domain Discretization: The Leapfrog Scheme and the Courant Stability Condition (CFL Condition)
70
Other Spatial Domain Discretization Schemes
72
Subgridding Mesh
72
Nonorthogonal Mesh
75
Hybrid FDTD Meshes
76
Boundary Conditions
78
Mur's Absorbing Boundary Conditions (ABCs)
78
Perfect Matched Layers (PMLs)
80
Periodic Boundary Condition (PBC)
81
Bandgap Calculation
83
Source Excitation
84
Dispersion Diagram Calculation
84
Transmission and Reflection Coefficient Calculation
85
Summary
87
References
88
FDTD Modeling of EBGs and Their Applications
91
Introduction
91
FDTD Modeling of Infinite Electromagnetic Bandgap Structures
91
Physical Model of EBG Structures
91
Mesh Generation and Simulation Parameters in FDTD Modeling
93
Simulation Results of Infinite EBGs Using the Conformal and Yee's FDTD
94
Conformal FDTD Modeling of (Semi-)Finite EBG Structures
102
FDTD Model and Simulation Results
102
Design and Modeling of Millimeter-Wave EBG Antennas
105
Introduction
105
Design and Modeling of Woodpile EBG
108
A Millimeter-Wave EBG Antenna Based on a Woodpile Structure
115
Experimental Results
117
Conclusions
121
References
121
Left-Handed Metamaterials (LHMs) and Their Applications
123
Introduction
123
Effective Medium Theory and Left-Handed Metamaterials
123
A Composite Medium of Metallic Wires and Split Ring Resonators
124
Isotropic Three-Dimensional Left-Handed Metamaterials
125
Left-Handed Metamaterials Using Simple Short Wire Pairs
126
Applications of Left-Handed Metamaterials
127
Imaging by a Perfect LHM Lens
127
Transmission Line Structures of Left-Handed Metamaterials
128
Directive Electromagnetic Scattering by an Infinite Conducting Cylinder Coated with LHMs
142
Negative Index Materials (NIM) for Selective Angular Separation of Microwave by Polarization
144
References
145
Numerical Modeling of Left-Handed Material (LHM) Using a Dispersive FDTD Method
147
Introduction
147
The Effective Medium of Left-Handed Materials (LHMs)
148
Modeling of Left-Handed Metamaterials Using a Dispersive FDTD Method
156
Two-Dimensional Dispersive FDTD with Auxiliary Differential Equations (ADEs)
156
Phase Compensation Through Layered LHM Structures
160
Conjugate Dielectric and Metamaterial Slab as Radomes
161
Numerical Results
163
Conclusions
169
References
169
FDTD Modeling and Figure-of-Merit (FOM) Analysis of Practical Metamaterials
173
Introduction
173
EM Response of the Infinite, Doubly Periodic DNG Slab with Plane Wave Illumination
174
Model Description of the Array Comprising of Split-Ring Resonators and Wires
174
Scattering Parameters Measurements Obtained from the PBC/FDTD Code
174
Phase Data Inside the DNG Slab
175
Retrieval of Effective Material Constitutive Parameters Using the Inversion Approach
182
Review of the Inversion Approach
182
Retrieval of the Effective Material Parameters from the Numerical S-Parameters Obtained from FDTD Simulations of Metamaterials
186
Summary of the Difficulties Encountered Using the Inversion Approach for Effective Medium Characterization
207
EM Response of a Finite Artificial-DNG Slab with Localized Beam Illumination
208
Slab with Localized Beam Illumination
209
FDTD Model
209
Total Transmission and Reflection Power Under Gaussian Beam Illumination
210
EM Response of the Artificial-DNG Slab at Normal Incidence with Ey Polarization
213
EM Response of the Artificial-DNG Slab at Oblique TMz Incidence Coming from (θ = 150°, ø = 90°) with Hx Polarization
219
EM Response of the Artificial-DNG Slab at Oblique TEz Incidence Coming from θ = 150°, ø = 0° with Ey Polarization
223
EM Response of a Finite Artificial-DNG Slab Excited by Small Dipole
226
Figure-of-Merit (FOM) Analysis
228
Loss and Bandwidth of Metamaterials with Different Electrical Sizes and Particle Densities
229
Figure-of-Merit Analysis by Numerical Experiments
232
Conclusions
235
References
236
Accurate FDTD Modeling of a Perfect Lens
239
Introduction
239
Dispersive FDTD Modeling of LHMs with Spatial Averaging at the Boundaries
241
The (E, D, H, B) Scheme
242
The (E, J, H, M) Scheme
244
The Spatial Averaging Methods
245
Numerical Implementation
250
Effects of Material Parameters on the Accuracy of Numerical Simulation
255
Effects of Switching Time
258
Effects of Transverse Dimensions on Image Quality
260
Modeling of Subwavelength Imaging
262
Conclusions
264
References
264
Spatially Dispersive FDTD Modeling of Wire Medium
267
Introduction
267
Spatial Dispersion in the Wire Medium
269
Spatially Dispersive FDTD Formulations
270
Stability and Numerical Dispersion Analysis
274
Perfectly Matched Layer for Wire Medium Slabs
279
Numerical Thickness of Wire Medium Slabs
282
Two-Dimensional FDTD Simulations
286
Three-Dimensional FDTD Simulations
294
Experimental Verifications
297
Internal Imaging by Wire Medium Slabs
299
Conclusions
303
References
304
FDTD Modeling of Metamaterials for Optics
307
Introduction
307
Dispersive FDTD Modeling of Silver-Dielectric Layered Structures for Subwavelength Imaging
307
Introduction
307
FDTD Modeling of the Silver-Dielectric Layered Structure
310
Numerical Results and Discussions
311
A Metamaterial Scanning Near-Field Optical Microscope
316
Introduction
316
Theory
317
Simulation
317
FDTD Study of Guided Modes in Nanoplasmonic Waveguides
321
Conformal Dispersive FDTD Method Using Effective Permittivities (EPs)
322
FDTD Calculation of Dispersion Diagrams
326
Wave Propagation in Plasmonic Waveguides Formed by Finite Number of Elements
331
FDTD Modeling of Electromagnetic Cloaking Structures
333
Dispersive FDTD Modeling of the Cloaking Structure
335
Numerical Results and Discussion
341
References
346
Overviews and Final Remarks
353
Introduction
353
Overview of Advantages and Disadvantages of the FDTD Method in Modeling Metamaterials
353
Overview of Metamaterial Applications and Final Remarks
354
Small Antennas Enclosed by an ENG Shell
357
Focusing and Superlensing Effects
361
Performance Enhancement of Planar Antennas
370
Electromagnetic Cloaks
370
References
371
List of Abbreviations373
About the Authors375
Index377

Ricerca Ricerca avanzata
Libri
Libri in italiano
Libri in inglese
Outlet -50%
Libri scolastici
eBook
eBook
eReader
Mobile App
Musica
CD musicali
Vinili
MP3
DVD musicali
Blu-ray musicali
Film e video
DVD
Blu-ray
Giochi
Videogiochi
Giocattoli
Cartoleria e scuola
Sport e svago
Sport
Gadget e accessori
Librerie
Bergamo
Bologna
Ferrara
Firenze
Lecco
Mantova
Novara
Padova
Roma
Treviso
Il mio IBS
I miei dati
IBS Premium
I miei ordini
Lista dei desideri
Le mie preferenze
IBS consiglia
Stampa la tua card

 

Informazioni utili:
Spese e tempi di spedizione
Punti di ritiro
Invio regali
Buoni acquisto (Happy Card)
FAQ
Condizioni generali di vendita
Informativa sulla privacy
PuntiNectar

Pagamenti:
Carte di credito
Carta di credito accettate
PayPal
Paypal
Contrassegno

Come contattarci:
Invio messaggi al servizio di Assistenza Clienti
Tutti i contatti
• Telefono: +39 02 91435230
• Fax: +39 02 91435290

• Seguici su  Facebook Twitter

Servizi per i clienti:
Password dimenticata
Controllo e modifica dei propri dati
Verifica degli ordini effettuati

Opportunità per aziende e enti:
Servizi per le biblioteche
Programma di affiliazione (Informazioni generali)
Accesso alla sezione riservata Partnership Programme IBS
Accesso alla sezione riservata TradeDoubler

Concessionaria di pubblicità:



Con la collaborazione di Argento vivo per il settore editoria libraria

Ufficio stampa: Daniela Ravanetti

Altri siti del network IBS:
Libraccio.it
MYmovies.it
Wuz.it
Librerie Ubik
IBS

Internet Bookshop Italia S.r.l.
Sede Legale Via Giuseppe Verdi n.8 - 20090 Assago MI
Reg. Imprese di Milano 12252360156
R.E.A. Milano 1542508
P.IVA 12252360156
Capitale sociale € 1.054.852 i.v.
IBS è una società soggetta a direzione e coordinamento di Emmelibri srl

Copyright © 1998-2014 Internet Bookshop Italia, tutti i diritti riservati

Licenza SIAE n. 229/I/05-359.


Funzione di ricerca basata su FACT®Finder di OMIKRON

 


IBS