Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Adversarial Machine Learning
Scaricabile subito
72,99 €
72,99 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
72,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
72,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Adversarial Machine Learning
Chiudi

Promo attive (0)

Chiudi
Adversarial Machine Learning
Chiudi

Informazioni del regalo

Descrizione


Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats. This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised—and what can be done about it. The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals—whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems. In addition to diagnosing threats, the book provides a robust overview of defense strategies—from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability. Readers will gain a comprehensive view of today???s most dangerous attack methods including: Evasion attacks that manipulate inputs to deceive AI predictions Poisoning attacks that corrupt training data or model updates Backdoor and trojan attacks that embed malicious triggers Privacy attacks that reveal sensitive data through model interaction and prompt injection Generative AI attacks that exploit the new wave of large language models Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.
Leggi di più Leggi di meno

Dettagli

2026
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9781394402045
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore