Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Building LLM Agents with RAG, Knowledge Graphs & Reflection: A Practical Guide to Building Intelligent, Context-Aware, and Self-Improving AI Agent
Scaricabile subito
8,99 €
8,99 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
8,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
8,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Building LLM Agents with RAG, Knowledge Graphs & Reflection: A Practical Guide to Building Intelligent, Context-Aware, and Self-Improving AI Agent
Chiudi

Promo attive (0)

Chiudi
Building LLM Agents with RAG, Knowledge Graphs & Reflection: A Practical Guide to Building Intelligent, Context-Aware, and Self-Improving AI Agent
Chiudi

Informazioni del regalo

Descrizione


Building LLM Agents with RAG, Knowledge Graphs & Reflection A Practical Guide to Building Intelligent, Context-Aware, and Self-Improving AI Agents By Mira S. Devlin Transform Large Language Models into Intelligent Agents That Reason, Retrieve, and Reflect Large language models can generate text—but intelligence requires more than words. True intelligence demands reasoning, memory, and reflection. It requires systems that can connect what they know, retrieve what they need, and learn from what they produce. In Building LLM Agents with RAG, Knowledge Graphs & Reflection, AI systems architect Mira S. Devlin guides you beyond the surface of generative AI into the world of agentic intelligence—where LLMs evolve from reactive tools into dynamic collaborators capable of grounding responses in truth, understanding context, and improving over time. This book doesn't just explain concepts—it helps you build them. Each chapter blends theory, diagrams, and applied examples to show how retrieval, reasoning, and reflection interact inside modern AI agents. Whether you're constructing a self-updating research assistant or a multi-agent workflow, you'll gain a deep understanding of how today's most advanced cognitive systems are designed. What You'll Learn The Cognitive Core of AI Agents Understand the architecture of transformers, tokenization, and attention. Explore the shift from static LLMs to adaptive, outcome-driven agents. Learn how retrieval, reflection, and reasoning form the four pillars of intelligence. Retrieval-Augmented Generation (RAG) Master the techniques that make models factually grounded and transparent. Implement retrievers, rankers, and generators using open-source frameworks. Evaluate accuracy with metrics like Recall@K, Precision@K, and grounding quality. Knowledge Graphs and Structured Reasoning Design and query graph-based knowledge systems using Neo4j, ArangoDB, or GraphRAG. Combine structured knowledge with unstructured language for explainable AI. Reflection and Cognitive Loops Build agents that evaluate their own outputs and correct themselves. Implement Plan ? Act ? Reflect ? Revise cycles for self-improving intelligence. Explore short-term and long-term memory systems for continuous learning. Multi-Agent Collaboration Use frameworks like CrewAI, LangGraph, and AutoGPT2 to orchestrate coordination. Key Features End-to-end coverage: From LLM fundamentals to advanced RAG and reflection architectures. Practical code labs: Step-by-step walkthroughs in Python with modular components. Visual clarity: Concept diagrams, data flow maps, and evaluation schematics throughout. Debugging insights: Identify hallucinations, reasoning gaps, and retrieval errors with real-world examples. Scalable design patterns: Extend single-agent models into multi-agent collaborative systems. This book is written for: AI developers, data scientists, and engineers who want to move beyond simple LLM prompts. Architects and product innovators building intelligent, explainable, and adaptive AI systems. Researchers and students seeking a structured understanding of retrieval-based reasoning and reflection. Tech leaders and educators integrating agentic AI into enterprise or academic environments. You don't need a supercomputer—just intermediate Python skills, a working knowledge of APIs, and curiosity. Every example can be run on a standard laptop or cloud environment. Order Now.
Leggi di più Leggi di meno

Dettagli

2025
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9798232802684
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore