Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Deep Learning for Computational Imaging
Disponibilità in 5 gg lavorativi
47,50 €
-5% 50,00 €
47,50 € 50,00 € -5%
Disponibilità in 5 gg lavorativi
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 50,00 € 47,50 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 50,00 € 47,50 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi

Descrizione


Computational techniques for image reconstruction problems enable imaging technologies including high-resolution microscopy, astronomy and seismology, computed tomography, and magnetic resonance imaging. Until recently, methods for solving such inverse problems were derived by experts without any learning. Now, the best performing image reconstruction methods are based on deep learning. This textbook gives the first comprehensive introduction to deep learning based image reconstruction methods. This book first introduces important inverse problems in imaging, including denoising and reconstructing an image from few and noisy measurements, and explains what makes those problems hard and interesting. Then, the book briefly discusses traditional optimization and sparsity based reconstruction methods, as well as optimization techniques as a basis for training and deriving deep neural networks for image reconstruction. The main part of the book is about how to solve image reconstruction problems with deep learning techniques: The book first disuses supervised deep learning approaches that map a measurement to an image as well as network architectures for imaging including convolutional neural networks and transformers. Then, reconstruction approaches based on generative models such as variational autoencoders and diffusion models are discussed, and how un-trained neural networks and implicit neural representations enable signal and image reconstruction. The book ends with a discussion on the robustness of deep learning based reconstruction as well as a discussion on the important topic of evaluating models and datasets, which are a critical ingredient of deep learning based imaging.
Leggi di più Leggi di meno

Dettagli

2025
Paperback / softback
240 p.
Testo in English
234 x 157 mm
406 gr.
9780198947189
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore