Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Analysis of Multivariate Social Science Data: Statistical Machine Learning Methods - Irini Moustaki,Fiona Steele,Yunxiao Chen - cover
Analysis of Multivariate Social Science Data: Statistical Machine Learning Methods - Irini Moustaki,Fiona Steele,Yunxiao Chen - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Analysis of Multivariate Social Science Data: Statistical Machine Learning Methods
Disponibile in 5 gg lavorativi
61,74 €
-5% 64,99 €
61,74 € 64,99 € -5%
Disponibile in 5 gg lavorativi
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 64,99 € 61,74 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 64,99 € 61,74 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Analysis of Multivariate Social Science Data: Statistical Machine Learning Methods - Irini Moustaki,Fiona Steele,Yunxiao Chen - cover
Chiudi

Promo attive (0)

Descrizione


Drawing on the authors’ varied experiences researching and teaching in the field, Analysis of Multivariate Social Science Data: Statistical Machine Learning Methods, Third Edition enables a basic understanding of how to use key multivariate methods in the social sciences. With minimal mathematical and statistical knowledge required, this third edition expands its topics to include graphical modelling, models for longitudinal data, structural equation models for categorical variables, and latent class analysis for ordinal, nominal, and continuous variables. It also connects the topics to terminology and principles of machine learning, intended to help readers grasp the links between methods of multivariate analysis and advancements in the field of data science. After describing methods for the summarisation of data in the first part of the book, the authors consider regression analysis. This chapter provides a link between the two halves of the book, signalling the move from descriptive to inferential methods. The remainder of the text deals with model-based methods that primarily make inferences about processes that generate data. Relying heavily on numerical examples from a range of disciplines, the authors provide insight into the purpose and working of the methods as well as the interpretation of results from analyses. Many of the same examples are used throughout to illustrate connections between the methods. In most chapters, the authors present suggestions for further work that go beyond conventional practice, encouraging readers to explore new ground in social science research. Features Contains new chapters on undirected graphical modelling and models for longitudinal data, as well as new material such as K-means, cross-validation, structural equation models for categorical variables, latent class analysis for categorical, nominal and continuous variables, and treatment of missing data. Connects topics with terminology and principles of machine learning. Presents numerous examples of real-world applications, including voting preferences, social attitudes, educational assessment, recidivism, and health. Covers methods that summarise, describe, and explore multivariate datasets, including longitudinal data. Establishes a unified approach to latent variable modelling by providing detailed coverage of methods such as item response theory, factor analysis for continuous and categorical data, and models for categorical latent variables. Covers models for hierarchical and longitudinal data and their connections to latent variable models. Offers a full version of the data sets in the text or the book’s website, with software code for implementing the analyses on the website. The book offers a balanced and accessible resource for students and researchers with limited mathematical and statistical training. It serves as a practical resource for courses in multivariate analysis and as a guide for applying these techniques in applied research.
Leggi di più Leggi di meno

Dettagli

Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences
2026
Paperback / softback
481 p.
Testo in English
234 x 156 mm
920 gr.
9781032763729
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore