Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Causal Inference for Machine Learning Engineers
Causal Inference for Machine Learning Engineers
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Causal Inference for Machine Learning Engineers
Scaricabile subito
51,47 €
51,47 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
51,47 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
51,47 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Causal Inference for Machine Learning Engineers
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


This book provides a comprehensive exploration of causal inference, specifically tailored for machine learning practitioners. It begins by establishing the fundamental distinction between correlation and causation, emphasizing why traditional machine learning models—primarily focused on pattern recognition—often fall short in scenarios that require an understanding of cause and effect. The book introduces core causal concepts, such as interventions and counterfactuals, and explains how these ideas are formalized through tools like causal graphs (Directed Acyclic Graphs, or DAGs) and the do-operator. Readers will learn to identify common pitfalls in observational data, including confounding, selection bias, and Simpson’s Paradox, and will understand why these challenges necessitate a causal approach. Causal Inference for Machine Learning Engineers: A Practical Guide then moves to practical methods for causal estimation, detailing techniques such as regression adjustment, propensity score methods (including matching, stratification, and inverse probability weighting), and instrumental variables. The book delves into advanced topics such as mediation analysis, causal discovery algorithms (PC and FCI), and transportability, providing a roadmap for applying causal reasoning in diverse real-world applications across healthcare, economics, and the social sciences. A significant portion is dedicated to integrating causal inference with deep learning, introducing architectures such as TARNet, CFRNet, and DragonNet, as well as frameworks like Double Machine Learning, all designed to address the challenges of high-dimensional data and improve causal effect estimation in complex settings.
Leggi di più Leggi di meno

Dettagli

2026
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783031996801
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore