Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications - Timothy Masters - cover
Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications - Timothy Masters - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications
Disponibilità in 2 settimane
85,00 €
85,00 €
Disponibilità in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
85,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
85,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications - Timothy Masters - cover

Descrizione


Discover hidden relationships among the variables in your data, and learn how to exploit these relationships.  This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications.  All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use.  Others are standard algorithms given a fresh look.  In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program.  The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your data Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data Work with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methods See how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data Plot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables.  Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Leggi di più Leggi di meno

Dettagli

2017
Paperback / softback
286 p.
Testo in English
254 x 178 mm
9781484233146
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore