Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Deep Learning for Intrusion Detection
Scaricabile subito
116,99 €
116,99 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
116,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
116,99 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Deep Learning for Intrusion Detection
Chiudi

Promo attive (0)

Chiudi
Deep Learning for Intrusion Detection
Chiudi

Informazioni del regalo

Descrizione


Comprehensive resource exploring deep learning techniques for intrusion detection in various applications such as cyber physical systems and IoT networks Deep Learning for Intrusion Detection provides a practical guide to understand the challenges of intrusion detection in various application areas and how deep learning can be applied to address those challenges. It begins by discussing the basic concepts of intrusion detection systems (IDS) and various deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs). Later chapters cover timely topics including network communication between vehicles and unmanned aerial vehicles. The book closes by discussing security and intrusion issues associated with lightweight IoTs, MQTT networks, and Zero-Day attacks. The book presents real-world examples and case studies to highlight practical applications, along with contributions from leading experts who bring rich experience in both theory and practice. Deep Learning for Intrusion Detection includes information on: Types of datasets commonly used in intrusion detection research including network traffic datasets, system call datasets, and simulated datasets The importance of feature extraction and selection in improving the accuracy and efficiency of intrusion detection systems Security challenges associated with cloud computing, including unauthorized access, data loss, and other malicious activities Mobile Adhoc Networks (MANETs) and their significant security concerns due to high mobility and the absence of a centralized authority Deep Learning for Intrusion Detection is an excellent reference on the subject for computer science researchers, practitioners, and students as well as engineers and professionals working in cybersecurity.
Leggi di più Leggi di meno

Dettagli

2025
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9781394285174
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore