Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Fatou Type Theorems: Maximal Functions and Approach Regions - F. Di Biase - cover
Fatou Type Theorems: Maximal Functions and Approach Regions - F. Di Biase - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Fatou Type Theorems: Maximal Functions and Approach Regions
Disponibilità in 2 settimane
69,20 €
69,20 €
Disponibilità in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
69,20 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
69,20 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Fatou Type Theorems: Maximal Functions and Approach Regions - F. Di Biase - cover
Chiudi

Promo attive (0)

Descrizione


A basic principle governing the boundary behaviour of holomorphic func­ tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad­ mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half­ spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor­ phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.
Leggi di più Leggi di meno

Dettagli

Progress in Mathematics
2012
Paperback / softback
154 p.
Testo in English
235 x 155 mm
9781461274964
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore