Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Federated Learning: Security and Privacy - Somanath Tripathy,Harsh Kasyap,Minghong Fang - cover
Federated Learning: Security and Privacy - Somanath Tripathy,Harsh Kasyap,Minghong Fang - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Federated Learning: Security and Privacy
Disponibilità in 5 giorni lavorativi
59,38 €
-5% 62,50 €
59,38 € 62,50 € -5%
Disp. in 5 gg lavorativi
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 62,50 € 59,38 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 62,50 € 59,38 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Federated Learning: Security and Privacy - Somanath Tripathy,Harsh Kasyap,Minghong Fang - cover

Descrizione


As data becomes more abundant and widespread across personal devices, the need for secure, privacy-aware machine learning is growing. Federated Learning (FL) offers a promising solution, enabling smart devices to collaboratively train models without sharing raw data. Yet, despite its benefits, FL faces serious risks from poisoning and inference attacks. This book begins by introducing the fundamentals of machine learning, along with core deep learning architectures. Based on this foundation, it introduces the concept of Federated Learning (FL), which is a decentralised approach that enables collaborative model training without sharing raw data. The book provides an in-depth exploration of FL’s various forms, system architectures, and practical applications. A significant emphasis is placed on the growing security and privacy concerns in FL, particularly poisoning (both data poisoning and model poisoning) and inference attacks. It discusses state-of-the-art mitigation strategies, such as Byzantine-robust aggregation and inference-resistant techniques, supported with practical implementation insights. This book uniquely bridges foundational concepts with advanced topics in Federated Learning, offering a comprehensive view of its vulnerabilities and their mitigation. By combining theory with practical implementation of attacks and mitigation techniques, it serves as a valuable resource for researchers, practitioners, and students aiming to build secure, privacy-preserving collaborative machine learning systems. This book is unique due to its end-to-end coverage of Federated Learning (FL), from foundational machine and deep learning concepts to real-time deployment of FL along with security and privacy challenges associated. It both explains theory and offers hands-on implementation of attacks and defenses. This practical approach, combined with a clear structure and real-world relevance, makes it ideal for both academic and industry audiences. Promotional emphasis should highlight the book’s focus on actionable insights, its relevance to privacy-preserving and secure AI, and its utility as a learning and reference tool for building secure collaborative learning systems.
Leggi di più Leggi di meno

Dettagli

2025
Hardback
156 p.
Testo in English
216 x 138 mm
480 gr.
9781041174622
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore