Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Generalized Matrix Inversion: A Machine Learning Approach
Generalized Matrix Inversion: A Machine Learning Approach
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Generalized Matrix Inversion: A Machine Learning Approach
Scaricabile subito
187,19 €
187,19 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
187,19 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
187,19 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Generalized Matrix Inversion: A Machine Learning Approach
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


This book presents a comprehensive exploration of the dynamical system approach in numerical linear algebra, with a special focus on computing generalized inverses, solving systems of linear equations, and addressing linear matrix equations. Bridging four major scientific domains—numerical linear algebra, recurrent neural networks (RNNs), dynamical systems, and unconstrained nonlinear optimization—this book offers a unique, interdisciplinary perspective. Generalized Matrix Inversion: A Machine Learning Approach explores the theory and application of recurrent neural networks, particularly continuous-time recurrent neural networks (CTRNNs), which use systems of ordinary differential equations to model the influence of inputs on neurons. Special attention is given to CTRNNs designed for finding zeros of equations or minimizing nonlinear functions, with detailed coverage of two important classes: Gradient Neural Networks (GNN) and Zhang (Zeroing) Neural Networks (ZNN). Both time-varying and time-invariant models are examined across scalar, vector, and matrix cases. Based on the authors’ research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization. Readers will find a global overview of activation functions, rigorous convergence analysis, and innovative improvements in the definition of error functions for GNN and ZNN dynamic systems. Generalized Matrix Inversion: A Machine Learning Approach is an essential resource for researchers and practitioners seeking advanced methods at the intersection of machine learning, optimization, and matrix computation.
Leggi di più Leggi di meno

Dettagli

2026
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783032014931
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore