Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Machine Learning: Adaptive Behaviour Through Experience
Scaricabile subito
5,49 €
5,49 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
5,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
5,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Machine Learning: Adaptive Behaviour Through Experience
Chiudi
Machine Learning: Adaptive Behaviour Through Experience
Chiudi

Informazioni del regalo

Descrizione


This book is an introduction to Machine learning for beginners yet it has sufficient depth to interest technical developers. It addresses the subject of Machine Learning algorithms and the training techniques used, which will enable an agent to learn through its own experience gained through interaction with its environment. The book is aimed at students without any prerequisite knowledge of math or statistics, instead it addresses the algorithms, functions and techniques as understandable processes that the layman can comprehend and action. The topics of interest are as follows: How does A.I. differ from Machine Learning Machine Learning in practice Understanding the Machine Learning process Introduction to ML algorithms Function families of algorithms Approaches to Machine Learning Techniques and methods in applied Machine Learning Working with error Planning the Machine Learning process Understanding Linear regression Understanding Decision Trees Understanding Bayesian Networks Understanding Association Rules Understanding Support Vector Machines Understanding Clustering Understanding Neural Networks Intro to Deep Neural Networks (DNN) Types of DNN Understanding Feature Engineering Machine Learning Platforms and Frameworks Initially we will introduce machine learning and describe it relationship with Artificial Intelligence. As part of the discussion we will learn what Machine Learning is and how it differentiates from A.I. we will learn about some features of Machine Learning and study Machine Learning in practical terms by witnessing it in action. We will see the wide and diverse application of Machine Learning and understand its pervasiveness throughout most modern technologies. Then we will look under the hood at the technology to get an idea of how Machine Learning works rather than just a high-level of what it does. In particular we will be introduced to the three approaches to Machine Learning, supervised, unsupervised and reinforcement learning. We will learn about each method, how it works and why it is used for particular scenarios as well the families of algorithms that are the foundation of Machine Learning and by doing so we will learn some of the basic principles behind algorithms and some of the important inherent constraints. We will discuss the Bias-variance dilemma, the requirement for generalization, and our preference for simple over complex models. In addition we will introduce a commonly used term in Machine Learning, overfitting and we will learn the principle, how it occurs and why it is such an issue. We will also learn how we measure error accurately and suggest some trade-offs that improve performance. Then we come to addressing the harsh practical reality of preparing a Machine Learning model. We will learn how to handle data, through acquisition, cleansing and preparation. We will also learn how to choose an approach, a method and an algorithm that suits our needs. In the course of the book we will study Linear regression, Decision Trees, Bayesian Networks, Association Rules, Support Vector Machines, Clustering and Artificial Neural Networks. We will also learn about Feature Engineeringthe important task of selecting the appropriate features for the method being deployed. We will learn how to identify appropriate features and the techniques for feature extraction. Finally in the closing Chapter we will learn about the Machine Learning platforms and software languages that have good ML frameworks. We will also learn about other Machine learning resources, tools and techniques that enable even SME’s to actively participate in Machine Learning activities and research.
Leggi di più Leggi di meno

Dettagli

2017
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9781386922513
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore