Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples - Andrew P. McMahon - cover
Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples - Andrew P. McMahon - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples
Disponibilità in 2 settimane
73,90 €
73,90 €
Disponibilità in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
73,90 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
73,90 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples - Andrew P. McMahon - cover
Chiudi

Promo attive (0)

Descrizione


Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features * Explore hyperparameter optimization and model management tools * Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages * Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book Description Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering. What you will learn * Find out what an effective ML engineering process looks like * Uncover options for automating training and deployment and learn how to use them * Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions * Understand what aspects of software engineering you can bring to machine learning * Gain insights into adapting software engineering for machine learning using appropriate cloud technologies * Perform hyperparameter tuning in a relatively automated way Who This Book Is For This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary. Table of Contents * Introduction to ML Engineering * The Machine Learning Development Process * From Model to Model Factory * Packaging Up * Deployment Patterns and Tools * Scaling Up * Building an Example ML Microservice * Building an Extract Transform Machine Learning Use Case
Leggi di più Leggi di meno

Dettagli

2021
Paperback / softback
260 p.
Testo in English
93 x 75 mm
9781801079259
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore