Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Python Programming : Machine Learning & Data Science, Scikit-learn, TensorFlow, PyTorch, XGBoost, Statsmodels
Scaricabile subito
34,49 €
34,49 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
34,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
34,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Python Programming : Machine Learning & Data Science, Scikit-learn, TensorFlow, PyTorch, XGBoost, Statsmodels
Chiudi

Promo attive (0)

Chiudi
Python Programming : Machine Learning & Data Science, Scikit-learn, TensorFlow, PyTorch, XGBoost, Statsmodels
Chiudi

Informazioni del regalo

Descrizione


Book Description Machine learning is no longer a distant frontier reserved for data scientists and engineers in elite labs—it has become an essential toolkit for anyone seeking to derive insights from data, build predictive systems, or explore artificial intelligence. The landscape of machine learning is both vast and rapidly evolving, and understanding it requires more than just learning a few algorithms or copying code from tutorials. It requires a deep comprehension of core principles, preprocessing strategies, model building, evaluation techniques, and the ability to connect theoretical foundations with practical implementations. This book is designed to guide learners through the essential building blocks of machine learning, progressing from foundational preprocessing techniques to complex model evaluation and optimization strategies. Each section is crafted to demystify core concepts while grounding them in hands-on, real-world applications using Python libraries such as Scikit-learn. Whether you're a student, aspiring data scientist, or a professional seeking to strengthen your machine learning foundations, this book offers a structured and practical pathway. The journey begins with a deep dive into data preprocessing, exploring critical topics such as zero mean and unit variance normalization, min-max scaling, and the importance of thoughtful data transformation in ensuring model performance. Feature engineering is covered in detail, emphasizing its pivotal role in enhancing model accuracy and interpretability. Next, the book introduces Scikit-learn, the powerful Python library that simplifies many machine learning workflows. We present a clear overview of its structure, modules, and usage, ensuring that readers can effectively use it as a foundation for implementing models. We then move into the core algorithms of machine learning. Separate chapters are dedicated to logistic regression and linear regression, presenting both the theoretical underpinnings and practical applications using Scikit-learn. Each concept is explained in a step-by-step manner to bridge the gap between mathematical intuition and code implementation. The discussion continues with unsupervised learning techniques, including K-Means clustering and K-Nearest Neighbors, supported by intuitive explanations and practical examples. We also delve into decision trees, random forests, and support vector machines (SVMs)—key algorithms that power many real-world machine learning systems today. In the later sections, we address model evaluation and optimization, introducing techniques like cross-validation and grid search, which are essential for ensuring robust model performance and avoiding overfitting. Readers will gain the ability to not only build models but also to fine-tune and validate them effectively. Finally, the book briefly signals toward advanced frameworks such as TensorFlow, PyTorch, XGBoost, and Statsmodels, setting the stage for deeper exploration into deep learning, ensemble methods, and statistical modeling. This book is structured to be both accessible and comprehensive. Each chapter can be read independently, yet the sequence forms a coherent roadmap—from data preparation to model interpretation and optimization. We have taken care to provide examples, visualizations, and clear Python code to aid comprehension and encourage hands-on experimentation. It is our hope that this book will empower readers to not only learn machine learning but to think critically about data, make informed modeling decisions, and ultimately apply machine learning confidently in practical contexts. Welcome to your journey into the world of machine learning. — The Author
Leggi di più Leggi di meno

Dettagli

2025
e3
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9798231332342
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore