Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
PyTorch für Deep Learning
Scaricabile subito
34,90 €
34,90 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
34,90 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
34,90 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
PyTorch für Deep Learning
Chiudi

Promo attive (0)

Chiudi
PyTorch für Deep Learning
Chiudi

Informazioni del regalo

Descrizione


Der praktische Einstieg in PyTorch Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln. Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen. Aus dem Inhalt: Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren Lernen Sie, wie man Transfer Learning auf Bilder anwendet Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert.
Leggi di più Leggi di meno

Dettagli

2020
Testo in TED
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783960104001
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore