Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Akshay R Kulkarni,Adarsha Shivananda,Anoosh Kulkarni - cover
Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Akshay R Kulkarni,Adarsha Shivananda,Anoosh Kulkarni - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python
Disponibilità in 2 settimane
44,00 €
44,00 €
Disponibilità in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
44,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
44,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Akshay R Kulkarni,Adarsha Shivananda,Anoosh Kulkarni - cover
Chiudi

Promo attive (0)

Descrizione


This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.  It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn Implement various techniques in time series analysis using Python. Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting  Understand univariate and multivariate modeling for time series forecasting Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)  Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Leggi di più Leggi di meno

Dettagli

2022
Paperback / softback
174 p.
Testo in English
235 x 155 mm
9781484289778
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore