Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Event Attendance Prediction in Social Networks
Event Attendance Prediction in Social Networks
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Event Attendance Prediction in Social Networks
Scaricabile subito
56,15 €
56,15 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
56,15 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
56,15 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Event Attendance Prediction in Social Networks
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


This volume focuses on predicting users’ attendance at a future event at specific time and location based on their common interests. Event attendance prediction has attracted considerable attention because of its wide range of potential applications. By predicting event attendance, events that better fit users’ interests can be recommended, and personalized location-based or topic-based services related to the events can be provided to users. Moreover, it can help event organizers estimating the event scale, identifying conflicts, and help manage resources. This book first surveys existing techniques on event attendance prediction and other related topics in event-based social networks. It then introduces a context-aware data mining approach to predict the event attendance by learning how users are likely to attend future events. Specifically, three sets of context-aware attributes are identified by analyzing users’ past activities, including semantic, temporal, and spatial attributes. This book illustrates how these attributes can be applied for event attendance prediction by incorporating them into supervised learning models, and demonstrates their effectiveness through a real-world dataset collected from event-based social networks.
Leggi di più Leggi di meno

Dettagli

2021
Inglese
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783030892623
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore