Finite Element Methods for Maxwell's Equations

Peter Monk

Anno: 2003
Rilegatura: Hardback
Pagine: 468 p.
Testo in English
Dimensioni: 241 x 161 mm
Peso: 816 gr.
  • EAN: 9780198508885
pagabile con 18App pagabile con Carta del Docente

Articolo acquistabile con 18App e Carta del Docente

€ 108,57

€ 115,50

Risparmi € 6,93 (6%)

Venduto e spedito da IBS

109 punti Premium

Disponibile in 10 gg

Quantità:

Altri venditori

Mostra tutti (2 offerte da 115,50 €)

Descrizione
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.