Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization - Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb - cover
Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization - Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization
Disponibilità in 2 settimane
219,60 €
219,60 €
Disp. in 2 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
219,60 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
219,60 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization - Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb - cover

Descrizione


This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.  Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains.
Leggi di più Leggi di meno

Dettagli

Genetic and Evolutionary Computation
2024
Hardback
244 p.
Testo in English
235 x 155 mm
9789819920952
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare complianceDSA@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore