Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Social Web Artifacts for Boosting Recommenders: Theory and Implementation - Cai-Nicolas Ziegler - cover
Social Web Artifacts for Boosting Recommenders: Theory and Implementation - Cai-Nicolas Ziegler - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Social Web Artifacts for Boosting Recommenders: Theory and Implementation
Disponibilità in 2 settimane
132,30 €
132,30 €
Disponibilità in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
132,30 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
132,30 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Social Web Artifacts for Boosting Recommenders: Theory and Implementation - Cai-Nicolas Ziegler - cover
Chiudi

Promo attive (0)

Descrizione


Recommender systems, software programs that learn from human behavior and make predictions of what products we are expected to appreciate and purchase, have become an integral part of our everyday life. They proliferate across electronic commerce around the globe and exist for virtually all sorts of consumable goods, such as books, movies, music, or clothes. At the same time, a new evolution on the Web has started to take shape, commonly known as the “Web 2.0” or the “Social Web”: Consumer-generated media has become rife, social networks have emerged and are pulling significant shares of Web traffic. In line with these developments, novel information and knowledge artifacts have become readily available on the Web, created by the collective effort of millions of people. This textbook presents approaches to exploit the new Social Web fountain of knowledge, zeroing in first and foremost on two of those information artifacts, namely classification taxonomies and trust networks. These two are used to improve the performance of product-focused recommender systems: While classification taxonomies are appropriate means to fight the sparsity problem prevalent in many productive recommender systems, interpersonal trust ties – when used as proxies for interest similarity – are able to mitigate the recommenders' scalability problem.
Leggi di più Leggi di meno

Dettagli

Studies in Computational Intelligence
2013
Hardback
187 p.
Testo in English
235 x 155 mm
9783319005263
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore