Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Theory of Zipf's Law and Beyond - Alexander I. Saichev,Yannick Malevergne,Didier Sornette - cover
Theory of Zipf's Law and Beyond - Alexander I. Saichev,Yannick Malevergne,Didier Sornette - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Theory of Zipf's Law and Beyond
Disponibilità in 2 settimane
137,60 €
137,60 €
Disp. in 2 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
137,60 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
137,60 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Theory of Zipf's Law and Beyond - Alexander I. Saichev,Yannick Malevergne,Didier Sornette - cover
Chiudi

Promo attive (0)

Descrizione


Zipf’s law is one of the few quantitative reproducible regularities found in e- nomics. It states that, for most countries, the size distributions of cities and of rms (with additional examples found in many other scienti c elds) are power laws with a speci c exponent: the number of cities and rms with a size greater thanS is inversely proportional toS. Most explanations start with Gibrat’s law of proportional growth but need to incorporate additional constraints and ingredients introducing deviations from it. Here, we present a general theoretical derivation of Zipf’s law, providing a synthesis and extension of previous approaches. First, we show that combining Gibrat’s law at all rm levels with random processes of rm’s births and deaths yield Zipf’s law under a “balance” condition between a rm’s growth and death rate. We nd that Gibrat’s law of proportionate growth does not need to be strictly satis ed. As long as the volatility of rms’ sizes increase asy- totically proportionally to the size of the rm and that the instantaneous growth rate increases not faster than the volatility, the distribution of rm sizes follows Zipf’s law. This suggests that the occurrence of very large rms in the distri- tion of rm sizes described by Zipf’s law is more a consequence of random growth than systematic returns: in particular, for large rms, volatility must dominate over the instantaneous growth rate.
Leggi di più Leggi di meno

Dettagli

Lecture Notes in Economics and Mathematical Systems
2009
Paperback / softback
171 p.
Testo in English
235 x 155 mm
9783642029455
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafetyibs@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore