Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning - Remi Munos - cover
From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning - Remi Munos - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning
Disponibilità in 2 settimane
134,70 €
134,70 €
Disp. in 2 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
134,70 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
134,70 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning - Remi Munos - cover

Descrizione


From Bandits to Monte-Carlo Tree Search covers several aspects of the ""optimism in the face of uncertainty"" principle for large scale optimization problems under finite numerical budget. The monograph's initial motivation came from the empirical success of the so-called ""Monte-Carlo Tree Search"" method popularized in Computer Go and further extended to many other games as well as optimization and planning problems. It lays out the theoretical foundations of the field by characterizing the complexity of the optimization problems and designing efficient algorithms with performance guarantees. The main direction followed in this monograph consists in decomposing a complex decision making problem (such as an optimization problem in a large search space) into a sequence of elementary decisions, where each decision of the sequence is solved using a stochastic ""multi-armed bandit"" (mathematical model for decision making in stochastic environments). This defines a hierarchical search which possesses the nice feature of starting the exploration by a quasi-uniform sampling of the space and then focusing, at different scales, on the most promising areas (using the optimistic principle) until eventually performing a local search around the global optima of the function. This monograph considers the problem of function optimization in general search spaces (such as metric spaces, structured spaces, trees, and graphs) as well as the problem of planning in Markov decision processes. Its main contribution is a class of hierarchical optimistic algorithms with different algorithmic instantiations depending on whether the evaluations are noisy or noiseless and whether some measure of the local ''smoothness'' of the function around the global maximum is known or unknown.
Leggi di più Leggi di meno

Dettagli

Foundations and Trends (R) in Machine Learning
2014
Paperback / softback
146 p.
Testo in English
234 x 156 mm
216 gr.
9781601987662
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare complianceDSA@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore