Spectral Methods in Soliton Equations

I. D. Iliev, Eugeni Khristov, Kiril Petrov Kirchev

Anno: 1994
Rilegatura: Hardback
Pagine: 400 p.
Testo in English
Dimensioni: 279 x 216 mm
Peso: 726 gr.
  • EAN: 9780582239630
pagabile con 18App pagabile con Carta del Docente

Articolo acquistabile con 18App e Carta del Docente

€ 270,34

€ 290,69

Risparmi € 20,35 (7%)

Venduto e spedito da IBS

270 punti Premium

Disponibile in 4/5 settimane

Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.