Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Linear Algebra: From the Beginnings to the Jordan Normal Forms - Toshitsune Miyake - cover
Linear Algebra: From the Beginnings to the Jordan Normal Forms - Toshitsune Miyake - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Linear Algebra: From the Beginnings to the Jordan Normal Forms
Disponibilità in 2 settimane
67,60 €
67,60 €
Disp. in 2 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
67,60 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
67,60 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Linear Algebra: From the Beginnings to the Jordan Normal Forms - Toshitsune Miyake - cover

Descrizione


The purpose of this book is to explain linear algebra clearly for beginners. In doing so, the author states and explains somewhat advanced topics such as Hermitian products and Jordan normal forms. Starting from the definition of matrices, it is made clear with examples that matrices and matrix operation are abstractions of tables and operations of tables. The author also maintains that systems of linear equations are the starting point of linear algebra, and linear algebra and linear equations are closely connected. The solutions to systems of linear equations are found by solving matrix equations in the row-reduction of matrices, equivalent to the Gauss elimination method of solving systems of linear equations. The row-reductions play important roles in calculation in this book. To calculate row-reductions of matrices, the matrices are arranged vertically, which is seldom seen but is convenient for calculation. Regular matrices and determinants of matrices are defined and explained. Furthermore, the resultants of polynomials are discussed as an application of determinants. Next, abstract vector spaces over a field K are defined. In the book, however, mainly vector spaces are considered over the real number field and the complex number field, in case readers are not familiar with abstract fields. Linear mappings and linear transformations of vector spaces and representation matrices of linear mappings are defined, and the characteristic polynomials and minimal polynomials are explained. The diagonalizations of linear transformations and square matrices are discussed, and inner products are defined on vector spaces over the real number field. Real symmetric matrices are considered as well, with discussion of quadratic forms. Next, there are definitions of Hermitian inner products. Hermitian transformations, unitary transformations, normal transformations and the spectral resolution of normal transformations and matrices are explained. The book ends with Jordan normal forms. It is shown that any transformations of vector spaces over the complex number field have matrices of Jordan normal forms as representation matrices.
Leggi di più Leggi di meno

Dettagli

2023
Paperback / softback
362 p.
Testo in English
235 x 155 mm
581 gr.
9789811669965
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare complianceDSA@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore