Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Online Machine Learning: A Practical Guide with Examples in Python - cover
Online Machine Learning: A Practical Guide with Examples in Python - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Online Machine Learning: A Practical Guide with Examples in Python
Disponibilità in 3 settimane
73,08 €
-5% 76,93 €
73,08 € 76,93 € -5%
Disp. in 3 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
73,08 € Spedizione gratuita
disponibilità in 3 settimane disponibilità in 3 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
73,08 € Spedizione gratuita
disponibilità in 3 settimane disponibilità in 3 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Online Machine Learning: A Practical Guide with Examples in Python - cover

Descrizione


This book deals with the exciting, seminal topic of Online Machine Learning (OML). The content is divided into three parts: the first part looks in detail at the theoretical foundations of OML, comparing it to Batch Machine Learning (BML) and discussing what criteria should be developed for a meaningful comparison. The second part provides practical considerations, and the third part substantiates them with concrete practical applications. The book is equally suitable as a reference manual for experts dealing with OML, as a textbook for beginners who want to deal with OML, and as a scientific publication for scientists dealing with OML since it reflects the latest state of research. But it can also serve as quasi OML consulting since decision-makers and practitioners can use the explanations to tailor OML to their needs and use it for their application and ask whether the benefits of OML might outweigh the costs. OML will soon become practical; it is worthwhile to get involved with it now. This book already presents some tools that will facilitate the practice of OML in the future. A promising breakthrough is expected because practice shows that due to the large amounts of data that accumulate, the previous BML is no longer sufficient. OML is the solution to evaluate and process data streams in real-time and deliver results that are relevant for practice. In addition to this book, interactive Jupyter Notebooks and further material about OML are provided in the GitHub repository (https://github.com/sn-code-inside/online-machine-learning). The repository is continuously maintained, so the notebooks may change over time.
Leggi di più Leggi di meno

Dettagli

Machine Learning: Foundations, Methodologies, and Applications
2024
Hardback
155 p.
Testo in English
235 x 155 mm
430 gr.
9789819970063
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da IBS, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare complianceDSA@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore