Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Theory of Disagreement-Based Active Learning - Steve Hanneke - cover
Theory of Disagreement-Based Active Learning - Steve Hanneke - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Theory of Disagreement-Based Active Learning
Disponibilità in 2 settimane
140,30 €
140,30 €
Disp. in 2 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
140,30 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
140,30 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Theory of Disagreement-Based Active Learning - Steve Hanneke - cover

Descrizione


Active learning is a protocol for supervised machine learning in which a learning algorithm sequentially requests the labels of selected data points from a large pool of unlabeled data. This contrasts with passive learning where the labeled data are taken at random. The objective in active learning is to produce a highly-accurate classifier, ideally using fewer labels than the number of random labeled data sufficient for passive learning to achieve the same. Theory of Disagreement-Based Active Learning describes recent advances in our understanding of the theoretical benefits of active learning, and implications for the design of effective active learning algorithms. Much of the monograph focuses on a particular technique, namely disagreement-based active learning, which by now has amassed a mature and coherent literature. It also briefly surveys several alternative approaches from the literature. The emphasis is on theorems regarding the performance of a few general algorithms, including rigorous proofs where appropriate. However, the presentation is intended to be pedagogical, focusing on results that illustrate fundamental ideas rather than obtaining the strongest or most generally known theorems. Theory of Disagreement-Based Active Learning is intended for researchers and advanced graduate students in machine learning and statistics who are interested in gaining a deeper understanding of the recent and ongoing developments in the theory of active learning.
Leggi di più Leggi di meno

Dettagli

Foundations and Trends (R) in Machine Learning
2014
Paperback / softback
198 p.
Testo in English
234 x 156 mm
286 gr.
9781601988089
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.ibs.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare complianceDSA@feltrinelli.it

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore