Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Implement NLP use-cases using BERT: Explore the Implementation of NLP Tasks Using the Deep Learning Framework and Python (English Edition)
Scaricabile subito
8,49 €
8,49 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
8,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
8,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Implement NLP use-cases using BERT: Explore the Implementation of NLP Tasks Using the Deep Learning Framework and Python (English Edition)
Chiudi

Promo attive (0)

Chiudi
Implement NLP use-cases using BERT: Explore the Implementation of NLP Tasks Using the Deep Learning Framework and Python (English Edition)
Chiudi

Informazioni del regalo

Descrizione


State-of-the-art BERT implementation for text classification KEY FEATURES ? Provides a detailed explanation of the real world and industry wide NLP use-cases. ? Provides a solid foundation of the state of the art language model BERT. ? Provides methodologies to transform and fine tune the BERT model for a domain specific data. DESCRIPTION This book provides a solid foundation for 'Natural Language Processing' with pragmatic explanation and implementation of a wide variety of industry wide scenarios. After reading this book, one can simply jump to solve real world problems and join the league of NLP developers. It starts with the introduction of Natural Language Processing and provides a good explanation of different practical situations which are currently implemented across the globe. Thereafter, it takes a deep dive into the text classification with different types of algorithms to implement the same. Then, it further introduces the second important NLP use case called Named Entity Recognition with its popular algorithm choices. Thereafter, it provides an introduction to a state of the art language model called BERT and its application. After reading this book, you would be prepared to start picking any NLP applications, have a healthy discussion about the pros and cons of different approaches with other team members, and definitely implement a good NLP model. Finally, at the end of this book you will connect with all the theoretical discussions with code snippets (Python) which would be really helpful to implement into your domain-specific applications. WHAT YOU WILL LEARN ? Learn to implement transfer learning on pre-trained BERT models. ? Learn to demonstrate a production ready Text Classification for domain specific data and networking using Python 3.x. ? Learn about the domain specific pre trained models with a library called `aiops` which has been specially designed for this book. ? Explore and work with popular and industry targeted NLP algorithms. WHO THIS BOOK IS FOR This book is meant for Data Scientists and Machine Learning Engineers who are new to Natural Language Processing and want to quickly implement different NLP use-cases. Readers should have a basic knowledge of Python before reading the book. AUTHOR BIO Amandeep has been working as a technical lead in the field of software development at the time of publishing this book. He has worked for almost eight years in a few of the top MNCs. His interests include coding in Java and Python with an inclination in deep learning. He has worked in numerous data science fields, especially Natural Language Processing. He received his master's degree with a specialization in Data Analytics from the Birla Institute of Technology and Science, Pilani, and has reviewed a few research papers under 'IEEE Transactions on Neural Networks and Learning Systems'. He has earned certifications from multiple MOOCs on data science, machine learning, deep learning, image processing, natural language processing, artificial intelligence, algorithms, statistics, mathematics, and related courses.
Leggi di più Leggi di meno

Dettagli

2021
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9789390684625
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore