Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Transparency and Interpretability for Learned Representations of Artificial Neural Networks
Transparency and Interpretability for Learned Representations of Artificial Neural Networks
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Transparency and Interpretability for Learned Representations of Artificial Neural Networks
Scaricabile subito
74,87 €
74,87 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
74,87 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
74,87 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Transparency and Interpretability for Learned Representations of Artificial Neural Networks
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI’s decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network’s learned representation in the same spirit as neuroscientific studies of the brain.
Leggi di più Leggi di meno

Dettagli

2022
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783658400040
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore